Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(8)2022 08 11.
Article in English | MEDLINE | ID: covidwho-1987986

ABSTRACT

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Subject(s)
COVID-19 , Farms , Mink , SARS-CoV-2 , Animals , COVID-19/epidemiology , COVID-19/veterinary , Female , Male , Mink/virology , Netherlands/epidemiology , Risk Factors , SARS-CoV-2/isolation & purification
2.
Euro Surveill ; 27(31)2022 08.
Article in English | MEDLINE | ID: covidwho-1987414

ABSTRACT

In the Netherlands, the avian influenza outbreak in poultry in 2003 and the Q fever outbreak in dairy goats between 2007 and 2010 had severe consequences for public health. These outbreaks led to the establishment of an integrated human-veterinary risk analysis system for zoonoses, the Zoonoses Structure. The aim of the Zoonoses Structure is to signal, assess and control emerging zoonoses that may pose a risk to animal and/or human health in an integrated One Health approach. The Signalling Forum Zoonoses (SO-Z), the first step of the Zoonoses Structure, is a multidisciplinary committee composed of experts from the medical, veterinary, entomology and wildlife domains. The SO-Z shares relevant signals with professionals and has monthly meetings. Over the past 10 years (June 2011 to December 2021), 390 different signals of various zoonotic pathogens in animal reservoirs and humans have been assessed. Here, we describe the Zoonoses Structure with examples from signals and responses for four zoonotic events in the Netherlands (tularaemia, Brucella canis, West Nile virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)). This may serve as an example for other countries on how to collaborate in a One Health approach to signal and control emerging zoonoses.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , One Health , Animals , Communicable Diseases, Emerging/epidemiology , Humans , Netherlands/epidemiology , SARS-CoV-2 , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL